CS410/510 Advanced Programming
Lecture 5:

Collections in Smalltalk

Portland State

IIIIIIIIII

“List” Operations

e |ast class you heard about list
operations in Haskell

* For each there is a corresponding
operation in Smalltalk; most work on any
collection, not just lists.

 Advanced programmers use these
operations; they almost never munge
around with array indexes or pointers

Portland State

IIIIIIIIII

Haskell & Smalltalk crib sheet

). map collect:

). find detect:

). filter select:

A all allSatisfy:
) any anySatisfy:
). foldl inject: into:

IIIIIIIIII

collect: captures a pattern

* |f you ever find yourself writing a loop, or
a recursive method, that builds a new
collection based on an old one:

e STOP!

e Ask yourself: is this a collect:?

IIIIIIIIII

What about do:?

 do: does some action on every element of a
existing collection

e collect: builds a new collection based on
applying a function to every element of an
existing collection

e |f you find yourself writing:

newCollection := <someclass> new.
self do: [:each | newCollection add: (<an expression involving each>)].
<proceed to use newCollection>

» Consider using collect: instead

Portland State

IIIIIIIIII

Maybe types vs. Control

e Sometimes you don’t know if an element
IS In a collection

A find:: (a -> Bool) -> [a] -> Maybe a

detect: [:each | aBlock] ifNone: [anotherBlock]

¥ Examples:

#(1 3 5) detect: [: each | each even] m error

? #(1 3 5) detect:
#(1 3 4) detect:

Portland State

IIIIIIIIII

. each | each even |

: each|each even’

ifNone: [2] m 2
4

Anonymous functions

» [: each | each even | is an anonymous function
* What about named functions?

e there aren’t any! Methods are not functions
 [|] will turn a message-send into a function

® [:n|n + 1] is the successor function
). Haskell is briefer (+1)

* You could write a method that answers a
function

Portland State

IIIIIIIIII

folds

). foldr substitutes from the right:

). foldr(+)0[1,2,3]™ 1+2+3+0
or, more precisely: 1 + (2 + (3 + 0))

). foldl substitutes from the left:

). foldl (+)0[1,2,3]™= 0+1+2+3
or, more precisely: (0+1)+2)+3

P inject:into: /s foldl

® (1 to: 3) inject: O into: [:acc :each | acc + each]

Portland State 8

IIIIIIIIII

Inject:into: example

(1 to: 6)
inject: Set new
into: [:acc :each|each even

ifTrue: [acc add: each]. acc]
w3 Set(6 2 4)

((1 to: 6) select: [:each|each even]) asSet

what’s the difference?

Portland State

IIIIIIIIII

common patterns captured by iterators

count: aPredicate

e answers the number of elements for which aPredicate is true

do: elementBlock separatedBy: separatorBlock

e execute the elementBlock for each element, and the separator block
between the elements.

do: aBlock without: anltem

e execute aBlock for those elements that are not equal to anltem

detectMax: aBlock

e answer the element for which aBlock evaluates to the highest
magnitude

Portland State

IIIIIIIIII

...and on SequenceableCollections

with: otherCollection collect: twoArgBlock
 twoArgBlock calculates the elements of the result

with: otherCollection do: twoArgBlock

 twoArgBlock does something with corresponding elements of self and
otherCollection

withindexCollect: twoArgBlock

e twoArgBlock calculates the elements of the result based on each of my
elements and its index

withindexDo: twoArgBlock

 twoArgBlock does something with corresponding elements of self and
each element’s index

Portland State

IIIIIIIIII

Permutations and Combinations

permutationsDo: aBlock

e execute aBlock (self size factorial) times, with a single copy of self
reordered in all possible ways.

combinations: kk atATimeDo: aBlock

e take my items kk at a time, and evaluate aBlock (self size take: kk)
times, once for each combination. aBlock takes an array of elements;
each combination occurs only once, and order of the elements does
not matter.

Portland State

IIIIIIIIII

and more ...

allButFirstDo:
allButLastDo:

doDisplayingProgress:

Portland State

IIIIIIIIII

“List Comprehensions”

e (3enerators

3% [1..10]
% [1,5..25]

e Manipulators
h[172]1i<—[2.8]
h[172]i<—[2..8]], eveni
L) | i<=[2..4],) <7..9]]
) zip [2..4][7..9]

Portland State

IIIIIIIIII

Programming is about finding patterns

e |f the same pattern comes up in several
places

e abstract it into a programming language
element (method, class, function)

* replace all of the occurrences of the pattern
with the abstraction

* once and only once

e define the pattern once

Portland State

IIIIIIIIII

Tuple example

testTuple
self assert: ((2 to: 4) with: (7 to: 9) collect: [:a b | (a,b)])
={(2,7).(@3,8).(4 9)}
testHaskellStyleilnterval
self assert: (1,3 ~12) asArray=#(13579 11)

Portland State

IIIIIIIIII

